Intercomparing LSTM and RNN to a Conceptual Hydrological Model for a Low-Land River with a Focus on the Flow Duration Curve

Author:

Ley Alexander1,Bormann Helge1ORCID,Casper Markus2ORCID

Affiliation:

1. Research and Transfer, Jade University of Applied Sciences Wilhelmshaven/Oldenburg/Elsfleth, 26121 Oldenburg, Germany

2. Physical Geography, Department of Spatial and Environmental Science, Trier University, 54296 Trier, Germany

Abstract

Machine learning (ML) algorithms slowly establish acceptance for the purpose of streamflow modelling within the hydrological community. Yet, generally valid statements about the modelling behavior of the ML models remain vague due to the uniqueness of catchment areas. We compared two ML models, RNN and LSTM, to the conceptual hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) within the low-land Ems catchment in Germany. Furthermore, we implemented a simple routing routine in the ML models and used simulated upstream streamflow as forcing data to test whether the individual model errors accumulate. The ML models have a superior model performance compared to the HBV model for a wide range of statistical performance indices. Yet, the ML models show a performance decline for low-flows in two of the sub-catchments. Signature indices sampling the flow duration curve reveal that the ML models in our study provide a good representation of the water balance, whereas the HBV model instead has its strength in the reproduction of streamflow dynamics. Regarding the applied routing routine in the ML models, there are no strong indications of an increasing error rising upstream to downstream throughout the sub-catchments.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3