Development of high-resolution 72 h precipitation and hillslope flood maps over a tropical transboundary region by physically based numerical atmospheric–hydrologic modeling

Author:

Trinh T.12,Ho C.3,Do N.4,Ercan A.5,Kavvas M. L.2

Affiliation:

1. Faculty of Hydrology and Water Resources, Thuy Loi University, Hanoi, Vietnam

2. Hydrologic Research Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

3. The Key Laboratory of River and Coastal Engineering, Hanoi, Vietnam

4. Vietnam Academy for Water Resources, Hanoi, Vietnam

5. J. Amorocho Hydraulics Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

Abstract

Abstract Long-term, high spatial and temporal resolution atmospheric and hydrologic data are crucial for water resource management. However, reliable high-quality precipitation and hydrologic data are not available in various regions around the world. This is, in particular, the case in transboundary regions, which have no formal data sharing agreement among countries. This study introduces an approach to construct long-term high-resolution extreme 72 h precipitation and hillslope flood maps over a tropical transboundary region by the coupled physical hydroclimate WEHY-WRF model. For the case study, Da and Thao River watersheds (D-TRW), within Vietnam and China, were selected. The WEHY-WRF model was set up over the target region based on ERA-20C reanalysis data and was calibrated based on existing ground observation data. After successfully configuring, WEHY-WRF is able to produce hourly atmospheric and hydrologic conditions at fine resolution over the target watersheds during 1900–2010. From the modeled 72 h precipitation and flood events, it can be seen that the main precipitation mechanism of DRW and TRW are both the summer monsoon and tropical cyclone. In addition, it can be concluded that heavy precipitation may not be the only reason to create an extreme flood event. The effects of topography, soil, and land use/cover also need to be considered in such nonlinear atmospheric and hydrologic processes. Last but not least, the long-term high-resolution extreme 72 h precipitation and hillslope flood maps over a tropical transboundary region, D-TRW, were constructed based on 111 largest annual historical events during 1900–2010.

Funder

Fostering Innovation through Research

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3