Flood forecasting by means of dynamical downscaling of global NWPs coupling with a hydrologic model at Nong Son-Thanh My River basins

Author:

Trinh Toan12ORCID,Do N.2,Trinh L.3,Carr K.1

Affiliation:

1. a Hydrologic Research Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA, USA

2. b Vietnam Academy for Water Resources, Hanoi, Vietnam

3. c Center for Environmental Fluid Dynamics, VNU University of Science, Vietnam National University, Hanoi, Vietnam

Abstract

Abstract Almost every year, Vietnam suffers floods resulting in the loss of many lives and considerable costs for damaged and lost properties. This study proposes a forecasting system that couples the dynamical downscaling technique with hydrologic models to forecast real-time flood events with a lead time ranging from one to three days. This approach is demonstrated by applying a regional numerical weather prediction and physically based hydrologic model to the Thanh My and Nong Son watersheds. System inputs are provided by two global NWPs, the global forecasting system (GFS) and the global spectral model (GSM). A WEHY-WRF was selected as the hydrologic-atmospheric component for the proposed system. WEHY-WRF was successfully implemented and validated before testing the real-time forecasting system over the Nong Son-Thanh My watersheds. Overall, the comparison between the model simulations and corresponding observations shows the rainfall and flood forecast by WEHY-WRF-GFS match quite well with observation data and perform better than WEHY-WRF-GSM. However, all forecasting results are generally encouraging considering the correlation coefficients for most events are acceptable. The forecast methodology has demonstrated it as a comprehensive reliable technology that may be universally applied for flood prediction through the coupling of dynamical downscaling technique and hydrologic models.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3