Disinfection of Drinking Water Rich in Bromide with Chlorine and Chlorine Dioxide, While Minimizing the Formation of Undesirable By-Products

Author:

Rav-Acha Ch.1,Serri A.1,(Goldstein) Choshen E.1,Limoni B.2

Affiliation:

1. The Environmental Health Laboratory of the Hebrew University, Medical School, P.O. Box 1172, Jerusalem, Israel

2. The Central Laboratory of Mekorot Co., Israel

Abstract

Although chlorine dioxide does not form trihalomethanes (THM) and produces very few non-volatile haloorganic materials in drinking water, intensive investigations bearing on the formation of chlorite by ClO2 disinfection reveal that the rate of chlorite formation reflects the rate of ClO2 consumption and as long as the amount of ClO2 applied is behind its demand, about 60% of the chlorine dioxide consumed is converted into chlorite. Mixtures of Cl2 and ClO2, which may successfully reduce the formation of haloorganic compounds, as well as of chlorite in the absence of bromide, fail to do this where water rich in bromide is concerned. As a result of bromide oxidation by chlorine, bromine is formed, which in turn reacts more intensively with organics than does chlorine and thus favours the formation of THM and other halogenated organic materials. This problem can, however, be circumvented if ClO2 is allowed to react in water with the organic precursors before chlorine is introduced. A pre-treatment with 1 ppm of ClO2 two hours before the application of 2 ppm Cl2, was found to reduce the formation of THM by 60% relative to its formation by chlorine alone, and the chlorite is reduced in this case by up to 90% relative to its formation by chlorine dioxide alone. This is of particular importance since it can solve some of the major problems bearing on the impact of disinfection upon the formation of undesirable by-products.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3