Suspended particles in the drinking water of two distribution systems

Author:

Gauthier V.1,Barbeau B.1,Millette R.2,Block J.-C.3,Prévost M.1

Affiliation:

1. Ecole Polytechnique de Montreal, NSERC Industrial Chair on Drinking Water, Civil Geological and Mining Engineering, CP 6079, Succ. centre-ville, Montreal (Quebec), Canada, H3C 3A7

2. City of Montreal, Atwater Treatment Plant, 3161 rue Joseph, Verdun (Québec), Canada, H4G 1H8

3. Laboratoire Santé Environnement - LCPE, UMR Université - CNRS 7564, Faculté de Pharmacie - Pôle de l'eau, 15, avenue du Charmois, F-54500 Vandoeuvre, France

Abstract

The concentrations of suspended particles were measured in the drinking water of two distribution systems, and the nature of these particles documented. The concentrations of particulate matter were invariably found to be small (maximum 350 μg/L). They are globally in the very low range in comparison with dissolved matter concentrations, which are measured in several hundreds of mg/L. Except during special water quality events, such as turnover of the raw water resource, results show that organic matter represents the most important fraction of suspended solids (from 40 to 76%) in treated and distributed water. Examination of the nature of the particles made it possible to develop several hypotheses about the type of particles penetrating Montreal's distribution system during the turnover period (algae skeleton, clays). These particles were found to have been transported throughout the distribution systems quite easily, and this could result in the accumulation of deposits if their surface charge were ever even slightly destabilised, or if the particles were to penetrate the laminar flow areas that are fairly typical of remote locations in distribution systems.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3