Impact of hydraulic and physicochemical factors on spatiotemporal variations of particle-associated bacteria in a drinking water distribution system

Author:

Osborne Erika,Haddix Madison,Garner Emily

Abstract

Drinking water distribution systems are critical infrastructure that protect public health by ensuring safe water is transported from centralized treatment facilities to consumers. While growth of bacteria, such as opportunistic pathogens, in distribution system infrastructure is well established as a detriment to water quality, little is known about the role of sediment in conveying bacteria via biofilms throughout these systems. The objective of this study was to quantify the abundance of particle-associated bacteria in a rural drinking water distribution system with a chlorine disinfectant residual. The role of hydraulic and physicochemical factors in influencing the spatiotemporal loading of particle-associated bacteria in the system was also examined. The concentration of particle-associated bacteria averaged 1.28 log10 gene copies per mL, while total bacteria averaged 2.16 log10 gene copies per mL, demonstrating that biofilms formed on the surface of sediment represent a substantial portion of overall loading in the studied distribution system. Total suspended solids concentrations were correlated with particle-associated bacteria, but not total bacteria. Pipe diameter was found to be an important factor associated with the abundance of both total and particle-associated bacteria, as well as total chlorine concentration. Velocity, Reynold's number and the flow regime were also found to be important, as they were associated with both sediment and total bacteria, but not particle-associated bacteria. The results of this study indicate that particle-associated bacteria and total bacteria concentrations often followed disparate trends, demonstrating that their abundance is differentially influenced by a complex combination of physicochemical and hydraulic factors. These findings help to establish sediment as an important conduit for microbial loading in a chlorinated drinking water distribution system.

Funder

West Virginia University

Publisher

Frontiers Media SA

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3