Identifying feasible nonpoint source pollutant sampling intervals for watersheds with paddy field and urban land uses

Author:

Park Hyunkyu1,Beom Jina1,Jeung Minhyuk1,Choi Woojung1,Her Younggu2,Shirmohammadi Adel3,Yoon Kwangsik1

Affiliation:

1. Department of Rural and Biosystems Engineering & Education and Research Unit for Climate-Smart Reclaimed Tideland Agriculture, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea

2. Department of Agricultural and Biological Engineering, Tropical Research and Education Center, University of Florida, Homestead, Florida, 33186, USA

3. Department of Environmental Science and Technology (ENST), University of Maryland, College Park, MD 20742, USA

Abstract

Abstract Monitoring provides data and information necessary for water quality assessment, but often it is prohibitive, especially when frequent sampling is required. In this study, we explored feasible sampling intervals for improved efficiency of nonpoint source (NPS) pollution assessment. We compared NPS pollutant loads calculated with concentration samples collected at 1, 2, 3, 4, and 6-hour intervals for the first 24 hours of 13 storm events and investigated the effect of different sampling intervals on load estimation for three watersheds that have different land uses. When compared to load estimates made from concentrations sampled at the reference (1-hour) interval, differences in load estimates were less than 10% in the cases of the 2-hour and 3-hour intervals in the urbanized and agricultural watersheds, respectively, except in the case of suspended solids (SS). When it comes to the total load estimation, up to 3-hour interval sampling provided load estimates with acceptable accuracy, except for SS. Thus, the 3-hour sampling interval was considered feasible for long-term pollutant load assessment, while the 2-hour sampling interval was suggested for SS. Such findings are expected to facilitate NPS pollution assessment by providing information required to improve monitoring efficiency.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3