Affiliation:
1. University of British Columbia, 6250 Applied Science Ln #2002, Vancouver, BC, Canada V6T 1Z4
Abstract
Abstract
Artificial neural networks (ANNs) are increasingly being used in water treatment applications because of their ability to model complex systems. The present study proposed a framework to develop and validate ANNs for drinking water treatment and distribution system water quality applications. The framework was used to develop ANNs to identify the optimal ozone dose required for effective UV disinfection and to meet regulatory requirements for disinfection by-products (DBPs) in the distribution system. Treatment at a full-scale treatment plant was successfully modelled, with treated water UV transmittance as the output variable. ANNs could be used to identify operating setpoints that minimize operating costs for effective disinfection during drinking water treatment. However, because of the limited data available to train and validate the distribution system ANNs (i.e. n = 48; 15 years of quarterly measurements), these could not be used to reliably identify operating setpoints that also ensure compliance with DBP regulations.
Subject
Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献