Effect of different hydrolytic enzymes pretreatment for improving the hydrolysis and biodegradability of waste activated sludge

Author:

Chen Jiahao1,Liu Shihu12,Wang Yingmu1,Huang Wei1,Zhou Jian13

Affiliation:

1. Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, China

2. Chongqing Water Group Co. Ltd, Chongqing 400015, China

3. Faculty of Urban Construction and Environmental Engineering, Chongqing University, 174 Shazheng Street, 400045 Chongqing, China

Abstract

Abstract In this study, the effects of lysozyme, protease and α-amylase pretreatments for improving the hydrolysis and biodegradability of waste activated sludge (WAS) were investigated. The results showed that lysozyme was more effective in increasing the soluble chemical oxygen demand (SCOD) concentration in the liquid phase of sludge and improving the release of protein and carbohydrate from sludge flocculation to enhance sludge hydrolysis. After 8 h hydrolysis, the net SCOD increase in a reactor with lysozyme was 2.23 times and 2.15 times that of the reactors with protease and α-amylase, respectively. Meanwhile, lysozyme and protease could improve the lysis of microorganism cells and the dissolution of extracellular polymeric substances (EPS) to a certain extent, and lysozyme was more effective. Furthermore, the compositional characteristics of dissolved organic matter (DOM) and EPS were analyzed by EEM fluorescence spectroscopy and fluorescence regional integration (FRI) analysis. Tryptophan-like protein was the main component of sludge, which accounted for 31% and 38% of DOM and EPS, respectively. Lysozyme could decrease the percentage of non-biodegradable materials in sludge, such as humic acid-like substances and fulvic acid-like substances, so it could improve the biodegradability of sludge. This study can provide valuable information for future studies about hydrolytic enzyme pretreatments for WAS disposal.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference36 articles.

1. Utilization of enzymes for environmental applications;Critical Reviews in Biotechnology,2004

2. Pretreatment methods to improve sludge anaerobic degradability: a review;Journal of Hazardous Materials,2010

3. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter;Environmental Science & Technology,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3