Implications of CaCl2 application to plants in LID facilities

Author:

Choi H. S.1,Hong J. S.1,Geronimo F. K. F.1,Kim L. H.1

Affiliation:

1. Department of Civil and Environmental Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnamdo, 31080, South Korea

Abstract

Abstract Low impact development (LID) technologies mimic the natural water cycle through the physico-chemical and biological interactions of plants, filter media and soil, and microorganisms, thereby reducing the release of pollutants. In LID facilities, plants carry out photosynthesis, facilitate microbial growth, and uptake pollutants contained in stormwater runoff. However, de-icers (CaCl2) used to melt snow during winter slow the growth of plants and even increase plant mortality. In addition, de-icers change the soil structure, causing changes in soil content and affecting the growth of plants and microorganisms. Therefore, this study examined the effects of CaCl2 on the resistance of plants, the removal efficiency of non-point source pollutants, and water circulation. The mortality rate of the tree and shrubs caused by CaCl2 was found to be in the order of Rhododendron indicum > Spiraea prunifolia var. simpliciflora > Metasequoia glyptostroboides. For herbaceous plants, mortality rate was in the order of Pratia pedunculata > Aquilegia japonica > Tagetes erecta > Sedum makinoi aurea > Hosta longipes > Dianthus chinensis > Acorus gramineus > Liriope platyphylla. In addition, it was found that the amount of chlorophyll decreases with high concentrations of CaCl2. The findings of this research will be useful for plant selection considering CaCl2 concentrations applied to paved areas during the winter.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference31 articles.

1. Water relations, photosynthesis and nitrogen metabolism of Indian mustard (Brassica juncea Czern & Coss) grown under salt and water stress;Journal of Plant Biology–New Delhi,2003

2. Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity;Plant Soil,1994

3. Nitrogen fertilization under saline conditions in tomato and cucumber plants;Journal of Horticultural Science,1988

4. Dubuque C. 2010 De-icers for driveways and sidewalks. Telegraph Herald, 14 November, E7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3