Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride

Author:

Kwon Kei-JungORCID,Choi JaehyuckORCID,Kim Sang-Yong,Jeong Na-RaORCID,Park Bong-JuORCID

Abstract

The objective of this study was to analyze the effects of calcium chloride (CaCl2) used as a de-icing agent on growth and physiological responses of three ground cover plants, Hosta longipes, Iris ensata, and Iris pseudacorus. CaCl2 concentration was set to be 0 mM (control), 9 mM (0.1%), 18 mM (0.2%), and 54 mM (0.6%). After treatment with CaCl2 for 3 months, plant heights, fresh weights of shoots and roots, photosynthetic rates, chlorophyll fluorescence, chlorophyll content (SPAD), and leaf water potential were measured. After Hosta longipes was treated with CaCl2 for 60 days, physiological damage began to occur in all treatment groups except for the control group. Those treated with 54 mM CaCl2 completely withered. At 90 days after treatment (DAT), there were significant differences for all measured parameters for Hosta longipes compared to the control (p < 0.001). The higher the treatment concentration, the lower the photosynthetic rate, the SPAD, and the leaf water potential. There was no significant difference in plant height in Iris ensata after 60 DAT (p > 0.05), but in other physiological responses, there was a significant difference by concentration (p < 0.001). Iris ensata had a visually healthier state at 90 DAT, showing the smallest reduction in photosynthetic rate at 60 DAT and 90 DAT. Its SPAD value was increased more at 90 DAT than at 60 DAT, indicating its higher resistance to CaCl2. Iris pseudacorus showed similar results as Iris ensata. Over time, the 54 mM treatment resulted in significant damage. Among these three plants, Iris ensata showed the highest tolerance to CaCl2. Therefore, they are considered to be highly beneficial ground cover plants for green infrastructure in urban areas with high CaCl2 concentrations.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3