Affiliation:
1. School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
2. School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
Abstract
Abstract
In this study, the polyethyleneimine (PEI) modified waste bamboo powder (WBP-Na-PEI) was successfully prepared and applied to adsorbing Congo red (CR) dye from aqueous solution. The obtained materials were characterized by field emission scanning electron microscope, X-ray diffraction, Fourier transform-infrared, and thermogravimetric analysis. The results showed that WBP-Na-PEI(1.8 K-5) was synthesized successfully and PEI uniformly covered the WBP-Na-PEI(1.8 K-5) surface. In the process of adsorption, four kinds of influencing factors were discussed, and the adsorption mechanisms such as kinetics, isotherm, thermodynamics were explored. The maximum adsorption capacity of WBP-Na-PEI(1.8 K-5) was 992.94 mg·g−1 at 298 ± 1 K, and the removal efficiency was over 98%. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were studied, the results showed that the adsorption process conformed to the pseudo-second-order model, and the rate of this process was controlled by many steps. Furthermore, the removal efficiency of the adsorption kinetics reached 85% within 10 minutes. The results of the isotherm model and thermodynamics showed that the adsorption process was consistent with the Langmuir model and was mainly a spontaneous chemical endothermic process of monolayer. And the removal efficiency of the adsorbent reached 93% at the concentration of 400 mg/L, which can be expected to have a broad prospect in the treatment of CR industrial wastewater.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Environmental Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献