Utilizing Local Waste: Sustainable Adsorption of Reactive Blue 235 on Surfactant-Modified Bamboo Fibers

Author:

Vaid Samriti1ORCID,Kaur Varinder2ORCID,Sharma Sanyog1ORCID,Singh Anupinder3ORCID,Vaid Bhavna4ORCID,Arya Raj Kumar5ORCID,Verros G. D.6ORCID

Affiliation:

1. Department of Chemistry, UGC Sponsored-Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India

2. Department of Apparel and Textile Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India

3. Department of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India

4. PG Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Anandpur Sahib 140118, Punjab 160062, India

5. Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India

6. Laboratory of Polymer and Colour Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, P.O. Box 454, Plagiari 57500, Greece

Abstract

In this research endeavor, we sought to enhance the efficacy of bamboo fibers through modification with the surfactant cetyltrimethylammonium bromide (CTAB) for the purpose of removing Reactive Blue 235 from effluent. Our investigation encompassed a comprehensive exploration of the impact of crucial parameters, namely, adsorbent dosage (0.25 g–1.25 g), contact time (10–80 min), pH (2–12), initial dye concentration (20–100 mg/L), and temperature (298 K, 308 K, and 318 K) on the dynamics of dye removal. The optimum dye removal efficiency of 94% for Reactive Blue 235 was obtained at an adsorbent dosage of 0.5 g/50 ml of dye solution, initial dye concentration of 40 mg/L, pH of 6, and contact time of 40 min. The experimental framework included the anticipation of data aligned with various isothermal and kinetic models, facilitating a nuanced understanding of the adsorption process. Our findings unveiled that the kinetics of adsorption adhered to a second-order model, while the Langmuir isotherm model aptly described the adsorption behavior. Particularly noteworthy was the monolayer’s adsorption capacity, quantified at an impressive 7.39 mg·g−1 at a temperature of 318 K. The value of Freundlich’s constant, KF, increases with an increase in temperature indicating the endothermic nature of adsorption. The magnitude of E obtained from Dubinin–Radushkevich isotherm varying from 3.92 to 4.66 kJ/mol on increasing temperature from 298 K to 318 K suggests that adsorption of RB235 on BAT is a physisorption (value of E is between 1 and 8 kJ/mol). Delving into the thermodynamic aspects of the process, we calculated ΔH and ΔS to be 54.88 kJ/mol and 184.54 J/mol/K, respectively. The consistently negative values of ΔG (between −0.183 kJ/mol and −3.884 kJ/mol) at all temperatures underscored the feasibility, spontaneity, and entropy-driven nature of the adsorption of RB235 on CTAB-treated bamboo fiber (BAT). What sets our study apart is the deliberate utilization of bamboo fibers sourced from local waste streams, embodying a commitment to sustainable practices. Beyond its effectiveness in effluent treatment, our approach aligns with eco-friendly principles by repurposing indigenous waste materials, contributing to a more sustainable and environmentally responsible future.

Funder

DST-SERB

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3