Hydrophobically modified cotton fabric assisted separation of oil-water mixture

Author:

Bhatt Neha1ORCID,Mishra Abhilasha1ORCID,Goswami Rekha23ORCID

Affiliation:

1. Department of Chemistry, Graphic Era Deemed to be University, Dehradun, India

2. Department of Environmental Science, Graphic Era Deemed to be University, Dehradun, India

3. Department of Environmental Science, Graphic Hill University, Dehradun, India

Abstract

Abstract Superhydrophobic-superoleophilic fabrics were prepared and evaluated for oil–water mixture separation efficiencies. The nano-TiO2 and nano-SiO2 based coatings were done on the surface of the cotton fabric to create nanoscale roughness over the surface which was further modified by low energy material 1, 1, 3, 3-Hexamethyldisilazane (HMDS) and, polydimethylsiloxane (PDMS). Particle size and stability of prepared sol were characterized by particle size analysis and zeta potential. Coated cotton fabric samples were characterized by contact angle, contact angle hesteresis and surface free energy for its hydrophobic nature. Surface morphology was studied by scanning electron microscopy (SEM). The coated fabrics were found to be hydrophobic with low surface free energy values. The maximum contact angle was found to be 133° and lowest contact angle hysteresis was 5°. SEM confirmed the appearance of nanoscale surface roughness after coating of sols on cotton fabric. The average particle size and zeta potential values of silica sol was 61 nm and 137 mv whereas for titania sol it was found 344 nm and 200 mv, respectively. The oil–water separation efficiency of coated fabric was also observed by a different oil–water mixture. The coatings were found to be hydrophobic in nature and seem to be very useful for oil–water mixture separation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3