Bioinspired oil–water separation approaches for oil spill clean-up and water purification

Author:

Bhushan Bharat1ORCID

Affiliation:

1. Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics, The Ohio State University, 201 West 19th Ave., Columbus, OH 43210-1142, USA

Abstract

Water contamination is one of the major environmental and natural resource concerns in the twenty-first century. Oil contamination can occur during operation of machinery, oil exploration and transportation, and due to operating environment. Oil spills occasionally occur during oil exploration and transportation. Water contamination with various chemicals is a major concern with growing population and unsafe industrial practices of waste disposal. Commonly used oil–water separation techniques are either time consuming, energy intensive and/or environmentally unfriendly. Bioinspired superhydrophobic/superoleophobic and superoleophobic/superhydrophilic surfaces have been developed which are sustainable and environmentally friendly. Bioinspired oil–water separation techniques can be used to remove oil contaminants from both immiscible oil–water mixtures and oil–water emulsions. Coated porous surfaces with an affinity to water and repellency to oil and vice versa are commonly used. The former combination of affinity to water and repellency to oil is preferred to avoid oil contamination of the porous substrate. Oil–water emulsions require porous materials with a fine pore size. Recommended porous materials include steel mesh and cotton fabric for immiscible oil–water mixtures and cotton for oil–water emulsions. A review of various approaches is presented in this paper. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3