Preparation of bio-absorbents by modifying licorice residue via chemical methods and removal of copper ions from wastewater

Author:

Yin Xiaochun12,Zhang Nadi3,Du Meixia1,Zhu Hai1,Ke Ting1

Affiliation:

1. School of Public Health, Gansu University of Chinese Medicine, Gansu 730000, China

2. Collaborative Innovation Center of Traditional Chinese Medicine for Prevention and Control of Environmental and Nutrition-Related Disease in Northwest China, Gansu University of Chinese Medicine, Gansu 730000, China

3. Zhang Ye People's Hospital Affiliated to University, Gansu 734000, China

Abstract

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue (LR) with NaOH, Na2CO3 and citric acid, and were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, scanning electron microscopy (SEM), thermogravimetry (TG) and X-ray diffraction (XRD). Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second-order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, while LR-NaOH and LR-Na2CO3 significantly enhanced this value up to 43.65 mg/g and 43.55 mg/g, respectively. After four adsorption–desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be a potential approach for use in the water treatment.

Funder

Innovation Fund Project of Higher Education in Gansu Province

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3