Blue and grey water footprint of textile industry in China

Author:

Wang Laili1,Ding Xuemei1,Wu Xiongying2

Affiliation:

1. Fashion & Art Design Institute, Donghua University, Room 1004, 3rd Teaching Building, No. 1882 West Yan'an Road, Changning District, Shanghai 200051, China

2. Shanghai Entry-Exit Inspection and Quarantine Bureau of PRC, Room 1-2506, No. 1208 Minsheng Road, Pudong New Area, Shanghai 200135, China

Abstract

Water footprint (WF) is a newly developed idea that indicates impacts of freshwater appropriation and wastewater discharge. The textile industry is one of the oldest, longest and most complicated industrial chains in the world's manufacturing industries. However, the textile industry is also water intensive. In this paper, we applied a bottom-up approach to estimate the direct blue water footprint (WFdir,blue) and direct grey water footprint (WFdir,grey) of China's textile industry at sector level based on WF methodology. The results showed that WFdir,blue of China's textile industry had an increasing trend from 2001 to 2010. The annual WFdir,blue surpassed 0.92 Gm3/yr (giga cubic meter a year) since 2004 and rose to peak value of 1.09 Gm3/yr in 2007. The original and residuary WFdir,grey (both were calculated based on the concentration of chemical oxygen demand (CODCr)) of China's textile industry had a similar variation trend with that of WFdir,blue. Among the three sub-sectors of China's textile industry, the manufacture of textiles sector's annual WFdir,blue and WFdir,grey were much larger than those of the manufacture of textile wearing apparel, footware and caps sector and the manufacture of chemical fibers sector. The intensities of WFdir,blue and WFresdir,grey of China's textile industry were year by year decreasing through the efforts of issuing restriction policies on freshwater use and wastewater generation and discharge, and popularization of water saving and wastewater treatment technologies.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3