Experimental determination of the H2S mass transfer coefficient across the liquid–gas interface in gravity sewers

Author:

Pacheco Fernández Micaela1ORCID,Barjenbruch Matthias1

Affiliation:

1. Department of Urban Water Management, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Abstract

Abstract Hydrogen sulphide (H2S) emissions in sewer systems lead to several problems such as corrosion, odour nuisances, and health damage to sewer workers. Although the gas is formed in the liquid phase, its effects are noticeable when released into the sewer atmosphere. Until recently, the lack of analytical procedures for continuous monitoring of H2S in the liquid phase, as well as its toxicity, have challenged the quantification of the mass transfer coefficient under real conditions. Because of this, most studies have mainly focused on batch experiments with artificial wastewater and/or oxygen. The aim of this study was to experimentally determine the overall mass transfer coefficient for H2S during intermittent pumping events common in actual sewer systems, using the two-film theory approach and employing online sensors for liquid and gas phase measurements. The mass transfer coefficient was quantified by carrying out 21 experiments with actual wastewater in a 25 m long gravity pipe of a sewer pilot plant located in Berlin (Germany). Results show that the corrected mass transfer coefficient (KLa20) during a pumping event ranged between 0.1 and 8 h−1 with a median value of 4.2 h−1, within the range of the results obtained by the most common empirical models.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3