Affiliation:
1. Univ. Lyon, INSA-Lyon, Laboratory of Waste, Water, Environment, Pollution, 9 rue de la physique, F-69621 Villeurbanne Cedex, France
Abstract
H2S emission dynamics in sewers are conditioned by the mass transfer coefficient at the interface. This work aims at measuring the variation of the mass transfer coefficient with the hydraulic characteristics, with the objective of estimating H2S emission in gravity pipes, and collecting data to establish models independent of the system geometry. The ratio between the H2S and O2 mass transfer coefficient was assessed in an 8 L mixed reactor under different experimental conditions. Then, oxygen mass transfer measurements were performed in a 10 m long gravity pipe. The following ranges of experimental conditions were investigated: velocity flow [0–0.61 m.s−1], Reynolds number [0–23,333]. The hydrodynamic parameters at the liquid/gas interface were calculated by computational fluid dynamics (CFD). In the laboratory-scale reactor, the O2 mass transfer coefficient was found to depend on the stirring rate (rph) as follows: KL,O2 = 0.016 + 0.025 N3.85. A KL,H2S/KL,O2 ratio of 0.64 ± 0.24 was found, in accordance with previously published data. CFD results helped in refining this correlation: the mass transfer coefficient depends on the local interface velocity ui (m.h−1): KL,O2 = 0.016 + 1.02 × 10−5ui3.85 In the gravity pipe device, KL,O2 also exponentially increased with the mean flow velocity. These trends were found to be consistent with the increasing level of turbulence.
Subject
Water Science and Technology,Environmental Engineering
Reference23 articles.
1. Comparison of oxygen transfer measurement methods under process conditions;Capela;Water Environment Research,2004
2. A review of sulfide emissions in sewer networks: overall approach and systemic modelling;Carrera;Water Science and Technology,2015
3. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications;Celik;Journal of Fluids Engineering,2008
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献