High specific surface area N-doped activated carbon from hydrothermal carbonization of shaddock peel for the removal of norfloxacin from aqueous solution

Author:

Niu Xinyong1,Liu Chenglin1,Li Lin1,Han Xiuli1ORCID,Chang Chun1,Li Pan2,Chen Junying1

Affiliation:

1. a School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

2. b School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Abstract A novel N-doped activated carbon (NAC) derived from shaddock peel was investigated to remove norfloxacin (NFX) from aqueous solution. The Box-Behnken central composite design (BBD) was used to optimize the preparation conditions of NAC. The specific surface area of NAC was 2,481.81 m2 g−1, which was obtained at 1,106 K activation temperature, 2.4 h residence time, and 2.3:1 mass ratio of KOH to hydrochar. Moreover, the equilibrium data were perfectly represented by Langmuir and Koble-Corrigan isotherms, and the adsorption process was precisely described by the pseudo-second-order kinetic model. Besides, the adsorption of NFX on NAC was mainly controlled by π-π electron-donor-acceptor (EDA) interaction, hydrophobic effect, hydrogen-bonding, electrostatic interaction and Lewis acid-base effect. The maximum monolayer adsorption capacity of NFX was 746.29 mg g−1 at 298 K, implying that NAC was a promising adsorbent for the removal of NFX from aqueous solution.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3