Nitrogen-enriched activated carbon derived from plant biomasses: a review on reaction mechanism and applications in wastewater treatment

Author:

Bumajdad Ali,Khan Mohammad Jakir Hossain,Lukaszewicz Jerzy P.

Abstract

As a key kind of evolving carbonaceous adsorbent, nitrogen-enriched activated carbon has drawn a lot of focus due to its better physiochemical ability to eliminate an extensive range of wastewaters contaminants under severe conditions. Its environment-friendly character is one more reason behind this focus. Nitrogen also has immense effect on activated carbon structures’ pollutants adsorption capability; therefore, it is an area of interest. Reports concerning the reaction pathway of C-N (carbon-nitrogen) bond creation on AC surface are limited. Determining such mechanisms is challenging but critical to understand bond characteristics after carbonization. Moreover, it is vital to ascertain real-time kinetics concerning adsorption phenomena in liquid phase. Such a latest trend indicates that regulated nitrogen uses for carbonaceous substances having a biomass-based origin can provide the desired morphological characteristics produced through interconnections, production of enclosed holes, enhanced surface area, better adsorption ability, and many other benefits in contrast to conventional carbon-based substances. This review points out the developments in the main processes to introduce nitrogen atoms into the carbon matrix by utilizing different N-comprising chemical compounds. The nitrogen enrichment processes, reaction mechanisms and effects of nitrogen incorporation on the plant biomass-derived activated carbons (NEACs) are presented in brief. On the basis of their established physicochemical attributes, the adsorption performances of different biomass-derived NEACs have also been dealt with. More significantly, the review covers the technical issues in the present phase, topical trends, research gaps, economic viability along with a technical alignment recommendation to address the prevailing disadvantages.

Funder

Kuwait Foundation for the Advancement of Sciences

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3