Graphene oxide/MIL 101(Cr) (GO/MOF) nano-composite for adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4 D) from aqueous media: synthesis, characterization, kinetic and isotherm studies

Author:

Khaloo Shokooh Sadat12ORCID,Bagheri Amin2,Gholamnia Reza2,Saeedi Reza12

Affiliation:

1. a Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. b Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Abstract Contamination of water resources with various pollutants and therefore lack of clean water resources are major problems that threaten many human societies. The need to develop efficient methods and materials to decontaminate water resource is an undeniable fact. Metal-organic frameworks (MOFs), as new class of highly crystalline porous solids, have attracted a great deal of attention in different research fields, especially in adsorptive removal and purification. In this study, MIL 101(Cr) MOF decorated with graphene oxide nano-layers (GO/MOF) was synthesized by a simple one-pot hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electron dispersion energy (EDS) were utilized to approve the growing of Cr-MOF on graphene oxide nano-layer. The synthesized nano-composite was used as a potential adsorbent for the removal of a pesticide, 2, 4-dichlorophenoxyacetic acid (2,4 D). The adsorption performance, kinetic and mechanism of 2,4 D adsorption onto GO/MOF were studied. The highest adsorption capacities of 476.9 mg g−1 was obtained at room temperature, pH 6.0 using 0.6 gL−1 of GO/MOF which was 34% higher than that of pristine Cr-MOF. The kinetics and isotherm data fitted well with pseudo-second kinetic and Langmuir isotherm model, respectively. The reusability and stability analyses showed that the synthesized GO/MOF nanocomposite kept 89% of sorption capacities for 2,4 D after four adsorption–desorption cycles. GO/MOF nano-composite was successfully applied to remove 2,4 D from agricultural waste. The results approved that the synthesized nano-composite could introduce as a stable and high performance adsorbent for adsorptive removal of selected pesticide.

Funder

Shahid Beheshti University of Medical Sciences

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3