Antifouling BaTiO3/PVDF piezoelectric membrane for ultrafiltration of oily bilge water

Author:

Tan Zhirong12,Chen Shuiping3ORCID,Mao Xin12,Lv Heng3,Wang Yong4,Ye Xiaoqing12

Affiliation:

1. a School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China

2. b Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China

3. c School of Resource & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China

4. d School of the Environment, Nanjing University, NanJing 210023, PR China

Abstract

Abstract Barium titanate/polyvinylidene fluoride (BaTiO3/PVDF) piezoelectric membrane was successfully prepared and generated in-situ vibrations to reduce membrane fouling by applying alternating current (AC) signal for oily bilge water ultrafiltration. The effect of in-situ vibration on membrane fouling was investigated through changing in the excitation alternating voltage and its frequency, pH, crossflow rate. The results indicated that the piezoelectric membrane by applying AC signal remarkably alleviated the membrane fouling for bilge water ultrafiltration. The membrane fouling decreased with increasing the AC signal voltage. The final steady-state permeate flux from the piezoelectric membrane for bilge water ultrafiltration increased with the AC signal voltage, raising it by up to 63.4% at AC signal voltage of 20 V compared to that of the membrane without applying AC voltage. The high permeate flux was obtained at the resonant frequency of 220 kHz. During the 50-h ultrafiltration of bilge water with the piezoelectric membrane excited at 220 kHz and 15 V, the permeate flux from the membrane was stable. The oil concentration in outflow from the piezoelectric membrane was below 14 ppm, which met the discharged level required by IMO convention. The total organic carbon removal rate in bilge water was over 94%.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3