Photoreactivation and subsequent solar disinfection of Escherichia coli in UV-disinfected municipal wastewater under natural conditions

Author:

Schmidtlein F.1,Lübken M.1,Grote I.1,Orth H.1,Wichern M.1

Affiliation:

1. Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum 44780, Germany

Abstract

Photoreactivation of ultraviolet (UV)-disinfected wastewater of different qualities was experimentally assessed. Photoreactivation ability of secondary effluent and microstrained inflow was analyzed in different samples of 50 mL (Petri dish) and 7,000 mL volume to describe open channel effluent situations of wastewater treatment plants in a more realistic approach. The small sample of secondary effluent revealed a total log10 inactivation of 1.8 units and the small sample of microstrained inflow a total log10 inactivation of 3.2, with an applied UV-254 fluence of 84 and 253 J/m², respectively. Maximum net photoreactivation for secondary effluent and microstrained inflow was in the order of 1.2 log10 and 0.37 log10 units, respectively, for both sample sizes. However, significantly faster photoreactivation performance was generally determined for small sample volumes. The photoreactivation processes were completely compensated for by solar disinfection within a 120 min exposure time. Solar disinfection processes were negligible in the larger sample volumes of microstrained inflow. For municipal wastewater treatment systems with open channel effluents, it is essential to take into consideration the dependence of solar UV-365 fluence rate on water depth and wastewater characteristics.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3