First Results: Innovative Solar Disinfection Technology for Treated Wastewater that Integrates Materiality, Geometry, and Reflective Panels

Author:

Cisterna-Osorio PedroORCID,Quijada-Vera Sergio,Ruiz-Duran Daniela,Peirano-Cuevas Rodrigo,Ortiz-Briones Pamela

Abstract

Climate change is having drastic consequences in Chile. The lack of water in various regions is causing environmental impacts on ecosystems, including the decrease in the productive activities of rural economies and the deterioration in the quality of life of the inhabitants that occupy the affected physical spaces. In this paper, we propose a sustainable, low-cost treatment of wastewater and its reuse as an adaptation and mitigation policy, patented in 2019, that consists of a wastewater disinfection system based on solar energy. This system can work in both continuous and discontinuous modes. The water passes through a canal of reflective material in the continuous regime, and in the batch regime, the water remains in the canal. The panels are located parallel to the lateral faces of the canal. These panels concentrate the radiation in the canal through reflection. The trapezoidal geometry of the disinfectant canal deflects the radiation and reflects in the direction of the front walls of the canal, radiating what is returned and vice versa. The fraction of the radiation reflected outside the canal reaches the reflective side panels that return the radiation to the canal. The synergy of these three considerations increases the radiation in the canal area, augmenting the elimination of the bacterial load. In the trapezoidal reflective canal without panels, only 5% of the measured radiation exceeded the atmospheric radiation, eliminating 83% of the coliforms. The incorporation of panels surpassed the atmospheric radiation over 36% of the measured radiations, and the removal of coliforms exceeded 99.7%.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3