Allocating total emission pollutant control based on water environmental carrying capacity: model establishment and case study

Author:

Bai Hui12,Gao Wei3,Wang Dong2,Chen Yan2,Zhang Huanzhen1,Zhao Yanxin2,Zhao Kangping2,Sun Yunhai2,Sun Zhihua4

Affiliation:

1. School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China

2. United Center for Eco-Environment in Yangtze River Economic Belt, Chinese Academy for Environmental Planning, Beijing 100012, China

3. School of Ecology and Environmental Science, Yunnan University, Yunnan 650091, China

4. He Nan Research Academy of Environmental Sciences, Henan 450000, China

Abstract

Abstract The determination of the total amount of water pollutant emission in different regions is a difficult problem faced by managers and researchers. Previous studies mostly focused on operability and fairness with little attention paid to local water quality. In order to make total emission pollutant control (TEPC) truly serve the improvement of water quality, a water total emission pollutant allocation model was built based on water environmental carrying capacity (WECC) in this paper. This model was used to construct a water pollutant emission control allocation scheme for 28 cities in Henan Province, China. The results showed that the chemical oxygen demand (COD) reduction rates for these cities ranged from 16.8 to 38.6% and ammonia-nitrogen (NH3-N) reduction rates ranged from 5.7 to 43.5% in 2020, which were different from the previous targets for these cities without considering their current status of water quality. The largest COD reduction rates for different types of point sources (industrial, urban, and large-scale livestock sources) were 35.4%, 39.0%, and 38.0%, respectively, and the largest NH3-N reduction rates were 62.2%, 42.5%, and 43.5%, respectively. This study solves the problem of long-term disconnection between TEPC and water quality improvement in China. The results can also be applied to implement the TEPC to improve water quality in other regions with a similar problem.

Funder

the Basin Water Environment Quality Target Management Project

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3