Evaluating snowmelt runoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data

Author:

Carey S.K.1,Quinton W.L.2

Affiliation:

1. Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada K1S 5B6

2. Department of Geography, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

Research on snowmelt runoff generation in discontinuous permafrost subarctic catchments has highlighted the role of: (i) permafrost in restricting deep percolation and sustaining near-surface water tables and (ii) the surface organic layer in rapidly conveying water to the stream. Conceptual models of runoff generation have largely been derived from hydrometric data, with isotope and hydrochemical data having only limited application in delineating sources and pathways of water. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, snowmelt runoff generation processes were studied during 2002 using a mixed methods approach. Snowmelt timing varied between basin slopes, with south-facing exposures melting prior to permafrost-underlain north-facing slopes. The streamflow freshet period begain after 90% of snow had melted on the south-facing slope and coincided with the main melt period on the north-facing slope, indicating that contributing areas were largely defined by permafrost distribution. Stable isotope (δ18O) and hydrochemical parameters (dissolved organic carbon, specific conductivity, pH) suggest that, at the beginning of the melt period, meltwater infiltrates soil pores and resides in temporary storage. As melt progresses and bare ground appears, thawing of soils and continued meltwater delivery to the slopes allows rapid drainage of this meltwater through surface organic layers. As melt continues, soil thawing progresses and pre-event water mixes with melt water to impart streamflow with a gradually decreasing meltwater contribution. By the end of the melt period, the majority of water reaching the stream is displaced water that has resided in the catchment prior to melt. For the entire study period, approximately 21% of freshet was supplied by the snowpack, and the remaining majority was pre-melt water stored in the catchment slopes over-winter and displaced during melt. Hydrochemical data support hydrometric observations indicating the dominant flow pathway linking the slopes and the stream is through the organic horizon on permafrost-underlain slopes.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3