Hydrogen production from wastewater by acidogenic granular sludge

Author:

Liu H.1,Fang H.H.P.1

Affiliation:

1. Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

Sludge was granulated in a hydrogen-producing acidogenic reactor when operated at 26°C, pH 5.5 treating a sucrose-rich wastewater. The influence of hydraulic retention time (HRT) and sucrose concentration on hydrogen production by the acidogenic granular sludge was investigated at a constant loading rate of 25 g-sucrose/(láday). Results show that the gas composition was not greatly influenced by HRT or sucrose concentration. The hydrogen accounted for 57% to 68% of the biogas at HRT ranging 4.6-28.6 h and sucrose concentration ranging 4,800-29,800 mg/l. However, the hydrogen yield was more dependent on HRT and sucrose concentration. It ranged from 0.19 to 0.27 l/g-sucrose with the maximum yield occurring at HRT 13.7 h and sucrose concentration 14,300 mg/l in the wastewater. The acidified effluent was composed of volatile fatty acids and alcohols. The predominant products were butyrate (59-68%) and acetate (10-25%), plus smaller amounts of i-butyrate, valerate, i-valerate, caproate, methanol, ethanol, propanol, and butanol. The sludge yield averaged 0.2 g-VSS/g-sucrose. The carbon balance was 98-107% throughout the study.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3