Modelling of biochemical oxygen demand from limited water quality variable by ANFIS using two partition methods

Author:

Khaled Belouz12,Abdellah Aidaoui1,Noureddine Dechemi3,Salim Heddam4,Sabeha Aguenini5

Affiliation:

1. Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers, Algeria

2. Research attached, Institut National de la Recherche Agronomique d'Algérie (INRAA), Unité de Recherche Biskra, 2 rue des frères Ouaddek, El Harrach, Algiers, Algeria

3. Laboratoire Construction et Environnement, Ecole Nationale Polytechnique, 10, avenue Hassen BADI, BP 160, El Harrach, Alger 16182, Algérie

4. Faculty of Science Agronomy Department, University 20 Août 1955, Route EL HADAIK, BP 26 Skikda, Algeria

5. Agence Nationale des Barrages et Transferts (ANBT), 03, Rue Mohamed Allilet-Kouba, Algiers, Algeria

Abstract

Abstract This paper aims to: (1) develop models based on adaptive neuro-fuzzy inference system (ANFIS) able to predict five-day biochemical oxygen demand (BOD5) in Ouizert reservoir; (2) demonstrate the capability of the ANFIS in the practical issues of water quality management; (3) choose the optimal combination of input variables to improve the model performance; (4) compare two ANFIS partition methods, namely subtractive clustering called ANFIS-SC and grid partitioning, called ANFIS-GP. The models were developed using experimental data which were gathered during a ten-year period, at a mean monthly time step (scale). The input data used are total inorganic nitrogen, chemical oxygen demand (COD), total dissolved solid, dissolved oxygen and phosphate; the output is five-day biochemical oxygen demand (BOD5). Results reveal that ANFIS-SC models gave a higher correlation coefficient, a lower root mean square errors (RMSE) and mean absolute errors than the corresponding ANFIS-GP models. We can conclude that ANFIS-SC has supremacy over ANFIS-GP in terms of performance criteria and prediction accuracy for BOD5 estimation. The results showed that COD is the more effective variable for BOD5 estimating than other parameters, hence COD is the major driving factor for BOD5 modelling through ANFIS.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference42 articles.

1. Application of neuro-fuzzy based expert system in water quality assessment;Intl J. Syst. Assur. Eng. Manag.,2017

2. Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River;Journal of King Saud University – Engineering Sciences,2017

3. Fuzzy expert system for the detection of episodes of poor water quality through continuous measurement;Expert Systems with Applications,2012

4. Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques;Journal of Hydrology,2014

5. Estimation of dissolved oxygen by using neural networks and neuro-fuzzy computing techniques;KSCE J. Civ. Eng.,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3