Biodegradation of Aqueous Superabsorbents: Kinetic Assessment Using Biological Oxygen Demand Analysis

Author:

Smagin Andrey V.12ORCID,Sadovnikova Nadezhda B.1,Budnikov Viktor I.2

Affiliation:

1. Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia

2. Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Uspenskoe, 143030 Moscow, Russia

Abstract

Biodegradation is an important environmental factor controlling the effectiveness of aqueous superabsorbents for soil conditioning. The purpose of the study is to quantify this process using biological oxygen demand (BOD) analysis of composite superabsorbents with an acrylic polymer matrix, amphiphilic fillers (humates, peat) and silver ions as an inhibitor of biological activity. A simple kinetic model of BOD is proposed for standardization of the analysis and calculation of polymer half-life after their long-term (60–120 days) incubation in the VELP BOD analyzer (Italy) with automatic control. The half-life of pure hydrogels pre-swollen in distilled water (1:100) at 30 °C varied from 0.8 ± 0.2 to 2.4 ± 1.6 years. The addition of water extract from compost sharply enhances the biodegradation, lowering the half-life up to 40–60 days. Doses of 0.1–1% silver in a polymer matrix or 10–100 ppm in swollen hydrogels increase their half-life by 5–20 times. The discussion part questions the traditional division of aqua superabsorbents into “biodegradable” and “non-biodegradable”, and also analyzes the main advantages and disadvantages of the new methodology for their BOD analysis. The results may be of interest to a wide range of specialists from chemical technologists and biochemists to environmental engineers.

Funder

State Contract of the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3