Monitoring and prediction of land use/land cover changes and water requirements in the basin of the Urmia Lake, Iran

Author:

Roushangar Kiyoumars12,Aalami Mohammad Taghi1,Golmohammadi Hassan1,Shahnazi Saman1

Affiliation:

1. a Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2. b Center of Excellence in Hydroinformatics, University of Tabriz, Tabriz, Iran

Abstract

Abstract As one of the largest super-saline lakes in the world, Lake Urmia in northwestern Iran has been facing severe drying in recent years. Drought and rapid expansion of agricultural activities are considered to be the main driving factors in the shrinking of the lake. To address this problem, an analysis of the spatiotemporal dynamics of land use/land cover (LULC) is important. This research implemented a multi-source satellite image analysis through support vector machine (SVM) for mapping LULC distributions for the years 2000, 2010, and 2020. Cellular automata (CA)–Markov was prepared for modeling the future landscape changes for 2030 and 2040. In the last step, the water requirement of agriculture in the catchment area of the Urmia Lake was simulated through the NETWAT model. Through the employed future LULC modeling, it was found that the areas covered by irrigated agriculture and gardens will grow from 1,450 and 395 km2 to 3,600 and 1,650 km2 in 2040, respectively, as deduced from the changes that occurred from 2000 to 2020. This will increase the water requirement of agriculture from 1.5 billion cubic metres in 2000 to more than 4.1 billion cubic metres in 2040.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3