Removal of endocrine-disrupting chemical mixtures in water using chlorination and photolysis

Author:

Azevedo Taiza dos Santos1,Santos Juliana Palermo Evangelista dos2,Monteiro Neto João2,Gomes Fernanda Bento Rosa3ORCID,Bottrel Sue Ellen Costa23ORCID,Mounteer Ann Honor4ORCID,Pereira Renata de Oliveira23ORCID

Affiliation:

1. a Faculty of Medicine, Federal University of Vales do Jequitinhonha e Mucuri, R. Cruzeiro, 01, Jardim Sao Paulo, Teófilo Otoni, Minas Gerais, 39803-371, Brazil

2. b Department of Sanitary and Environmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais, 36036-900, Brazil

3. c Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil

4. d Department of Civil Engineering, Federal University of Viçosa, Av. P.H Rolfs, s/n, Campus UFV, Viçosa, Minas Gerais, 36570-900, Brazil

Abstract

Abstract Micropollutants have been continuously detected in freshwater. In parallel, the potential adverse effects of human exposure to endocrine-disrupting chemicals (EDCs) through drinking water have been gaining the attention of researchers and health authorities. Given this fact, this study aimed to evaluate the effectiveness of chlorination and photolysis to remove the estrogenic activity caused by mixtures of EDCs in water: estrone (E1: 100 ng L−1), 17β-estradiol (E2: 100 ng L−1), ethinylestradiol (EE2: 50 ng L−1), and nonylphenol (NP: 1,000 ng L−1) under operating conditions applicable for water treatment plants. The tests were performed using freshwater spiked with the following mixtures: E1 + E2, E1 + E2 + EE2, E1 + E2 + NP, and E1 + E2 + EE2 + NP). Removal efficiencies of up to 99.7% were achieved at a chlorine dose of 2.75 mg L–1 and 30 min of contact time. In photolysis, estrogenic activity removal was higher than 99.9% at a UV dose of 186 mJ cm–2. Results indicated that both chlorination and photolysis can be efficient to remove the estrogenic activity caused by the tested EDC mixtures in water. Furthermore, experiments suggested that EDC mixtures can be efficiently removed at feasible water disinfection operating conditions.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3