Author:
Singh Anil Kumar,Fernandez-Lafuente Roberto,Schmidt Jens Ejbye,Boczkaj Grzegorz,Bilal Muhammad
Abstract
Abstract
Purpose of Review
In the presented review, we have summarized and highlighted recent developments in the use of lignin peroxidase (LiP) to remove a variety of pollutants from water matrices. The high redox potential of LiP is underlined by its excellent catalytic functionalities in the elimination of pharmaceuticals, phenolics, dyes, polycyclic aromatic hydrocarbons (PAHs), endocrine-disrupting chemicals (EDCs), and other miscellaneous pollutants. LiP-based computational frameworks for theoretical bioremediation of multiple pollutants have also been discussed, which have prompted a rise in scientific interest.
Recent Findings
According to current studies, both free and immobilized LiPs are biocatalysts capable of efficient pollutant degradation and LMW transformation. Some immobilized LiP preparations demonstrated excellent recyclability, enabling its reusability in multiple catalytic cycles. Additionally, computational degradability makes it easier to comprehend the mechanisms underlying the degradation of recalcitrant pollutants.
Summary
The capacity of LiP to cleave C–C and C–O–C bonds has led to its widespread application as a biocatalyst. Its outstanding potential to catalyze oxidative cleavage has been effectively used in the remediation of pollutants without needing mediators. Nevertheless, we brought attention to the current LiP system in pollutants remediation and computational framework, which has generated a significant rise in scientific interest.
Funder
NOBELIUM JOINING GDANSK TECH RESEARCH COMMUNITY program
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献