New production pathway of musty 2,4,6-tribromoanisole during raw water disinfection processes at a surface water treatment plant

Author:

Adams Hunter1ORCID,Pochiraju Susheera2ORCID,Ikehata Keisuke3ORCID,Southard Mark1,Reeder Sam1,Appleton Emily1,Nix Daniel1

Affiliation:

1. a City of Wichita Falls, Wichita Falls, TX, USA

2. b Hazen and Sawyer, Denver, CO, USA

3. c Ingram School of Engineering, Texas State University, San Marcos, TX, USA

Abstract

Abstract The City of Wichita Falls’ Cypress Environmental Laboratory developed a comprehensive taste and odor (T&O) monitoring program to identify T&O compounds, their point of origin, and how to mitigate each T&O event to lessen its impact and maintain consumer confidence. In January 2023, a T&O compound was detected in the water system using sensory analysis with a threshold odor number (TON) of 3, guiding further analytical testing to identify for musty compounds. The unknown was confirmed to be 2,4,6-tribromoanisole (2,4,6-TBA) at a maximum of 9.86 ng/L. Its point of origin for production was tracked to a raw water line using chlorine dioxide as a primary disinfectant. Jar tests were performed to confirm that the mode of production was excess free chlorine from the generation of chlorine dioxide in the presence of bromide in raw water. The event was mitigated using powdered activated carbon in clarifiers to adsorb and settle out the compound, resulting in a non-detectable level (a TON of 1 and <5.00 ng/L for 2,4,6-TBA). This paper discusses the unique generation pathway within a full-scale treatment plant and how a monitoring and response program can be used to help detect a T&O event in early stages and aid mitigation processes.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3