Hybrid wavelet-GMDH model to forecast significant wave height

Author:

Shahabi Sajad1,Khanjani Mohammad-Javad1,Hessami Kermani Masoudreza1

Affiliation:

1. Civil Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, P. O. Box 76169-133, Kerman, Iran

Abstract

In this study, the group method of data handling (GMDH)-based wavelet transform (WT) was developed to forecast significant wave height (SWH) in different lead times. The SWH dataset was collected from a buoy station located in the North Atlantic Ocean. For this purpose, the time series of SWH was decomposed into some subseries using WT and then decomposed time series were imported to the GMDH model to forecast the SWH. Performance of the wavelet group method of data handling (WGMDH) model was evaluated using an index of agreement (Ia), coefficient of efficiency and root mean square error. The analysis proved that the model accuracy is highly dependent on the decomposition levels. The results showed that the WGMDH model is able to forecast the SWH with a high reliability.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3