Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches

Author:

Adnan Rana MuhammadORCID,Heddam SalimORCID,Yaseen Zaher MundherORCID,Shahid ShamsuddinORCID,Kisi OzgurORCID,Li BinquanORCID

Abstract

The potential or reference evapotranspiration (ET0) is considered as one of the fundamental variables for irrigation management, agricultural planning, and modeling different hydrological pr°Cesses, and therefore, its accurate prediction is highly essential. The study validates the feasibility of new temperature based heuristic models (i.e., group method of data handling neural network (GMDHNN), multivariate adaptive regression spline (MARS), and M5 model tree (M5Tree)) for estimating monthly ET0. The outcomes of the newly developed models are compared with empirical formulations including Hargreaves-Samani (HS), calibrated HS, and Stephens-Stewart (SS) models based on mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency. Monthly maximum and minimum temperatures (Tmax and Tmin) observed at two stations in Turkey are utilized as inputs for model development. In the applications, three data division scenarios are utilized and the effect of periodicity component (PC) on models’ accuracies are also examined. By importing PC into the model inputs, the RMSE accuracy of GMDHNN, MARS, and M5Tree models increased by 1.4%, 8%, and 6% in one station, respectively. The GMDHNN model with periodic input provides a superior performance to the other alternatives in both stations. The recommended model reduced the average error of MARS, M5Tree, HS, CHS, and SS models with respect to RMSE by 3.7–6.4%, 10.7–3.9%, 76–75%, 10–35%, and 0.8–17% in estimating monthly ET0, respectively. The HS model provides the worst accuracy while the calibrated version significantly improves its accuracy. The GMDHNN, MARS, M5Tree, SS, and CHS models are also compared in estimating monthly mean ET0. The GMDHNN generally gave the best accuracy while the CHS provides considerably over/under-estimations. The study indicated that the only one data splitting scenario may mislead the modeler and for better validation of the heuristic methods, more data splitting scenarios should be applied.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3