Affiliation:
1. Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
2. Interdisciplinary Programme in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India
Abstract
Abstract
Recently, physically-based hydrological models have been gaining much popularity in various activities of water resources planning and management, such as assessment of basin water availability, floods, droughts, and reservoir operation. Every hydrological model contains some parameters that must be tuned to the catchment being studied to obtain reliable estimates from the model. This study evaluated the performance of different evolutionary algorithms, namely genetic algorithm (GA), shuffled complex evolution (SCE), differential evolution (DE), and self-adaptive differential evolution (SaDE) algorithm for the parameter calibration of a computationally intensive distributed hydrological model, variable infiltration capacity (VIC) model. The methodology applied and tested for a case study of the upper Tungabhadra River basin in India and the performance of the algorithms is evaluated in terms of reliability, variability, efficacy measures in a limited number of function evaluations, their ability for achieving global convergence, and also by their capability to produce a skilful simulation of streamflows. The results of the study indicated that SaDE facilitates an effective calibration of the VIC model with higher reliability and faster convergence to optimal solutions as compared to the other methods. Moreover, due to the simplicity of the SaDE, it provides easy implementation and flexibility for the automatic calibration of complex hydrological models.
Subject
Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献