Machine learning algorithms for streamflow forecasting of Lower Godavari Basin

Author:

Vogeti Rishith Kumar1,Mishra Bhavesh Rahul2,Raju K. Srinivasa1

Affiliation:

1. a Department of Civil Engineering, BITS Pilani Hyderabad Campus, Hyderabad, India

2. b Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad Campus, Hyderabad, India

Abstract

Abstract The present study applies three Machine Learning Algorithms, namely, Bi-directional Long Short-Term Memory (Bi-LSTM), Wavelet Neural Network (WNN), and eXtreme Gradient Boosting (XGBoost), to assess their suitability for streamflow projections of the Lower Godavari Basin. Historical data of 39 years of daily rainfall, evapotranspiration, and discharge were used, of which 80% applied for the model training and 20% for the validation. A Random Search method was used for hyperparameter tuning. XGBoost performed better than WNN, and Bi-LSTM with an R2, RMSE, NSE, and PBIAS of 0.88, 1.48, 0.86, and 29.3% during training, and 0.86, 1.63, 0.85, and 28.5%, during validation, indicating the model consistency. Therefore, it was further used for projecting streamflow from climate change perspective. Global Climate Model, Ec-Earth3 was employed in the present study. Four Shared Socioeconomic Pathways (SSPs) were considered and downscaled using Empirical Quantile Mapping. Eight decadal streamflow projections were computed – D1 to D8 (2021–2030 to 2091–2099) – exhibiting significant changes within the warm-up period. They were compared with three historical time periods of H1 (1982–1994), H2 (1995–2007), and H3 (2008–2020). The highest daily streamflow projections were observed in D1, D3, D4, D5, and D8 in SSP245 as per XGBoost analysis.

Funder

Council of Scientific and Industrial Research, New Delhi

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

Reference38 articles.

1. Wavelet neural networks: a practical guide;Neural Networks,2013

2. Hydrological probabilistic forecasting based on deep learning and Bayesian optimization algorithm;Hydrology Research,2021

3. Daily runoff forecasting based on data-augmented neural network model;Journal of Hydroinformatics,2020

4. XGBoost: A scalable tree boosting system,2016

5. River flow forecasting using an inverse wavelet transform neural network approach;International Journal of Applied Mathematics, Computational Science and Systems Engineering,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3