Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network

Author:

El Ghazouli Khalid12ORCID,El Khattabi Jamal1ORCID,Shahrour Isam1ORCID,Soulhi Aziz3ORCID

Affiliation:

1. ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, Université de Lille, IMT Lille Douai, Université d'Artois, Yncrea Hauts-de-France, F-59000 Lille, France

2. Laboratoire d'Analyse des Systèmes, Traitement de l'Information et Management Industriel, Université Mohammed V, Rabat, Morocco

3. Ecole Nationale Supérieure des Mines de Rabat, Rabat, Morocco

Abstract

Abstract Wastewater flow forecasts are key components in the short- and long-term management of sewer systems. Forecasting flows in sewer networks constitutes a considerable uncertainty for operators due to the nonlinear relationship between causal variables and wastewater flows. This work aimed to fill the gaps in the wastewater flow forecasting research by proposing a novel wastewater flow forecasting model (WWFFM) based on the nonlinear autoregressive with exogenous inputs neural network, real-time, and forecasted water consumption with an application to the sewer system of Casablanca in Morocco. Furthermore, this research compared the two approaches of the forecasting model. The first approach consists of forecasting wastewater flows on the basis of real-time water consumption and infiltration flows, and the second approach considers the same input in addition to water distribution flow forecasts. The results indicate that both approaches show accurate and similar performances in predicting wastewater flows, while the forecasting horizon does not exceed the watershed lag time. For prediction horizons that exceed the lag time value, the WWFFM with water distribution forecasts provided more reliable forecasts for long-time horizons. The proposed WWFFM could benefit operators by providing valuable input data for predictive models to enhance sewer system efficiency.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous),Water Science and Technology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3