Tertiary treatment using ultrafiltration in an existing sewage treatment plant for industrial reuse: a modelling approach using artificial neural network with uncertainty estimation

Author:

Ramkumar D.1ORCID,Jothiprakash V.1ORCID

Affiliation:

1. 1 Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India

Abstract

Abstract Navi Mumbai Municipal Corporation of Maharashtra state, India, unified a tertiary treatment plant (TTP) of 20 × 103 m3/day capacity with ultrafiltration technology in an existing Koparkhairane sewage treatment plant (STP) for producing effluent quality usable for industrial purposes. As prior art, an artificial neural network-genetic algorithm (ANN-GA) along with uncertainty estimation using prediction interval is employed to model secondary treated effluent (STE) flow rate (QT) and other quality parameters such as biochemical oxygen demand, chemical oxygen demand, and total suspended solids (TSS) to conclude the reliability of the range in which the input available to TTP. ANN-GA model provides a coefficient of determination above 0.90 for all STE parameters modelled other than TSS. Inferring that a good quantity and quality of 20 × 103 m3/day STP treated water is currently available, where a decreasing trend of QT is also noticed and highlighted. Further, the Wilcoxon signed-rank test on the quality parameter of effluent TTP for industrial reuse standard infers TSS shows infringement during the initial period but started adhering to standards over time. The research delineates at the outset of exploring water reuse policy in India, emphasizing Maharashtra state, modelling STE using ANN-GA and performance evaluation of TTP.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3