Infection control by point-of-use water filtration in an intensive care unit – a Hungarian case study

Author:

Barna Zsófia1,Antmann Katalin2,Pászti Judit3,Bánfi Renáta1,Kádár Mihály1,Szax Anita1,Németh Melinda2,Szegő Eszter4,Vargha Márta1

Affiliation:

1. National Institute for Environmental Health, Department of Water Hygiene – Albert Flórián út 2–6, H-1097 Budapest, Hungary

2. Semmelweiss University, Infection Control Unit – Nagyvárad tér 4, H-1089 Budapest, Hungary

3. National Center for Epidemiology, Department of Phage-typing and Molecular epidemiology – Albert Flórián út 2-6, H-1097 Budapest, Hungary

4. Semmelweiss University, Kútvölgyi Teaching Hospital – Kútvölgyi út 4, H-1125 Budapest, Hungary

Abstract

Hospital tap water is a potential source of pathogenic bacteria associated with nosocomial infections. Infection control should include preventive measures to reduce the risk of waterborne infection. The efficiency of point-of-use water filters in infection control was assessed in the intensive care unit of a Hungarian hospital with long history of nosocomial Pseudomonas aeruginosa cases. All taps in the unit were fitted with disposable point-of-use filters. The incidence of nosocomial P. aeruginosa infections decreased from 2.71 to 0 cases/100 patient days when the filters were in place. Legionnaires' disease was not observed either during or outside the study period. Before the application of the filters, both P. aeruginosa and Legionella sp. were shown to colonize five of the seven taps. Filtration eliminated both bacteria completely, though secondary contamination was observed. Total genome restriction profiling of environmental and clinical P. aeruginosa isolates have shown the ubiquitous presence of a single genotype. The same genotype was detected in five of the seven previous nosocomial cases, which supports the assumption of water-derived infection. The results demonstrate that point-of-use filters are effective and cost-efficient measures in reducing health-care associated infections.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3