Estimating the permeability coefficient of soil using CART and GMDH approaches

Author:

Torabi Mina1,Sarkardeh Hamed2ORCID,Mirhosseini S. Mohammad1

Affiliation:

1. a Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran

2. b Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran

Abstract

Abstract Permeability coefficient of soil (k) is one of the most important parameters in groundwater studies. This study, two robust explicit data-driven methods, Including classification and regression trees (CART) and the group method of data handling (GMDH) were developed using the characteristics of soil, i.e., clay content (CC), water content (ω), liquid limit (LL), plastic limit (PL), specific density (γ), void ratio (e) to generate predictive equations for prediction of k. When compared to CART; mean absolute error (MAE) = 0.0051, root mean square error (RMSE) = 0.0088, scatter index (SI) = 64.00%, correlation coefficient (R) = 0.7841, index of agreement (IA) = 0.8830; the GMDH equation produced the lowest error values; MAE = 0.0044, RMSE = 0.0072, SI = 52.17%, R = 0.8493, Ia = 0.9184; in testing stage. Although, GMDH had better performance, however, CART and GMDH could be considered effective approaches for the prediction of k.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference25 articles.

1. Classification and regression trees;Wadsworth International Group,1984

2. Deep learning model for daily rainfall prediction: case study of Jimma, Ethiopia;Water Supply,2021

3. Polynomial theory of complex systems;IEEE Transactions on Systems, Man, and Cybernetics,1971

4. Assessment of soft computing models to estimate wave heights in Anzali port;Journal of Marine Engineering,2013

5. Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer;Water Supply,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3