Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer

Author:

Khedri Akbar1,Kalantari Nasrollah1,Vadiati Meysam2

Affiliation:

1. Earth Sciences Faculty, Shahid Chamran University of Ahwaz, Golestan Blvd, Ahvaz, Khuzestan, Iran

2. Department of Applied Geology, Faculty of Geoscience, Kharazmi University, Tehran, Iran

Abstract

Abstract Accurate and reliable groundwater level prediction is an important issue in groundwater resource management. The objective of this research is to compare groundwater level prediction of several data-driven models for different prediction periods. Five different data-driven methods are compared to evaluate their performances to predict groundwater levels with 1-, 2- and 3-month lead times. The four quantitative standard statistical performance evaluation measures showed that while all models could provide acceptable predictions of groundwater level, the least square support vector machine (LSSVM) model was the most accurate. We developed a set of input combinations based on different levels of groundwater, total precipitation, average temperature and total evapotranspiration at monthly intervals. For each model, the antecedent inputs that included Ht-1, Ht-2, Ht-3, Tt, ETt, Pt, Pt-1 produced the best-fit model for 1-month lead time. The coefficient of determination (R2) and the root mean square error (RMSE) were calculated as 0.99%, 1.05 meters for the train data set, and 95%, 2.3 meters for the test data set, respectively. It was also demonstrated that many combinations the above-mentioned approaches could model groundwater levels for 1 and 2 months ahead appropriately, but for 3 months ahead the performance of the models was not satisfactory.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference33 articles.

1. Support vector regression;Neural Information Processing-Letters and Reviews,2007

2. A comparison of first and second order training algorithms for artificial neural networks,2004

3. LIBSVM: a library for support vector machines;ACM Transactions on Intelligent Systems and Technology,2011

4. Artificial neural network modeling of water table depth fluctuations;Water Resources Research,2001

5. Groundwater level forecasting using artificial neural networks;Journal of Hydrology,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3