Stochastic modeling of gridded short-term rainstorms

Author:

Wu Shiang-Jen1,Hsu Chih-Tsu2,Chang Che-Hao3

Affiliation:

1. Department of Civil and Disaster Prevention Engineering, National United University, Miaoli 360001, Taiwan

2. National Center for High-Performance Computing, Hsinchu 30076, Taiwan

3. Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

Abstract This study aims to develop a stochastic method (SM_GSTR) for generating short-time (i.e., hourly) rainstorm events at all grids (named gridded rainstorm events) in a region. The proposed SM_GSTR model is developed by the non-normal correlated multivariate Monte Carlo simulation (MMCS) method with the statistical properties and spatiotemporal correlation structures of the four event-based gridded rainfall characteristics. The radar-based rainfall data on 20 typhoon events at 336 grids in a basin located in north Taiwan, Nankan River watershed, are used in the model development and demonstration. The results from the model demonstration indicate that the proposed SM_GSTR model can reproduce a great number of gridded rainfall characteristics, of which, the statistical properties in time and space have a good fit to those from the observations in association with the acceptable deviation; thus, it can reasonably emulate the behavior of the rain field in both time and space. It is expected that the resulting massive rainfall-induced disasters (e.g., inundation and landslide) from the physical-based numerical model with the simulated gridded rainstorms by the proposed SM_GSTR model can be applied to establish an alternative artificial intelligence (AI) model for effectively forecasting the hydrologic variables (e.g., runoff and water-level).

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3