Analysis of spatiotemporal variations of drought and its correlations with remote sensing-based indices via wavelet analysis and clustering methods

Author:

Ghasempour Roghayeh1,Roushangar Kiyoumars12,Ozgur Kirca V. S.3ORCID,Demirel Mehmet Cüneyd3ORCID

Affiliation:

1. Department of Water Resource Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2. Center of Excellence in Hydroinformatics, University of Tabriz, Tabriz, Iran

3. Division of Hydraulics, Department of Civil Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

Abstract Beside in situ observations, satellite-based products can provide an ideal data source for spatiotemporal monitoring of drought. In this study, the spatiotemporal pattern of drought was investigated for the northwest part of Iran using ground- and satellite-based datasets. First, the Standardized Precipitation Index series were calculated via precipitation data of 29 sites located in the selected area and the CPC Merged Analysis of Precipitation satellite. The Maximal Overlap Discrete Wavelet Transform (MODWT) was used for obtaining the temporal features of time series, and further decomposition was performed using Ensemble Empirical Mode Decomposition (EEMD) to have more stationary time series. Then, multiscale zoning was done based on subseries energy values via two clustering methods, namely the self-organizing map and K-means. The results showed that the MODWT–EEMD–K-means method successfully identified homogenous drought areas. On the other hand, correlation between the satellite sensor data (i.e. the Normalized Difference Vegetation Index, the Vegetation Condition Index, the Vegetation Healthy Index, and the Temperature Condition Index) was evaluated. The possible links between central stations of clusters and satellite-based indices were assessed via the wavelet coherence method. The results revealed that all applied satellite-based indices had significant statistical correlations with the ground-based drought index within a certain period.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3