Derivation of flood frequency curves through a bivariate rainfall distribution based on copula functions: application to an urban catchment in northern Italy's climate

Author:

Balistrocchi M.1,Bacchi B.1

Affiliation:

1. Department of Civil, Environmental, Architectural Engineering and of Mathematics, University of Brescia, via Branze 43, Brescia 25123, Italy

Abstract

The utilization of continuous approaches, namely analytical-probabilistic methods, has often been advocated for hydraulic device sizing, in order to overcome some deficiencies of the design event method. In the analytical distribution derivation, however, strong simplifying hypotheses are usually adopted. Rainfall depth and duration independency is the most unrealistic, even if it usually leads to satisfactory agreements between derived and benchmarking distributions. The reason can lie in drawbacks related to conventional assessment techniques of multivariate rainfall distributions. Copula functions recently provided a significant improvement in statistical inference capabilities and greatly simplified the distribution assessment. Nonetheless, the generalization of the return period concept, well defined in the univariate case, to multivariate cases has not found a blanket solution yet. Effective estimate methods can, however, be developed for the design and performance assessment of specific hydraulic devices. With regard to urban catchment applications, a criterion to derive flood frequency curves from a rainfall volume and duration distribution is herein proposed. Further, a method to estimate the return period of bivariate rainfall events based on a device-targeted approach is developed. Hydrologic simulations are conducted to support model reliability through a test case, featuring a northern Italian rainfall regime.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference30 articles.

1. Design storm pathology;Adams;Can. Water Resour. J.,1986

2. Sul dimensionamento delle reti di drenaggio con la metodologia dell'evento critico;Bacchi;Idrotecnica,1993

3. Modelling the statistical dependence of rainfall event variables through copula functions;Balistrocchi;Hydrol. Earth Syst. Sci.,2011

4. An analytical probabilistic model of the quality efficiency of a sewer tank;Balistrocchi;Water Resour. Res.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3