A multistate first-order Markov model for modeling time distribution of extreme rainfall events

Author:

Rohith A. N.,Gitau Margaret W.ORCID,Chaubey I.,Sudheer K. P.

Abstract

AbstractThe time distribution of extreme rainfall events is a significant property that governs the design of urban stormwater management structures. Accuracy in characterizing this behavior can significantly influence the design of hydraulic structures. Current methods used for this purpose either tend to be generic and hence sacrifice on accuracy or need a lot of model parameters and input data. In this study, a computationally efficient multistate first-order Markov model is proposed for use in characterizing the inherently stochastic nature of the dimensionless time distribution of extreme rainfall. The model was applied to bivariate extremes at 10 stations in India and 205 stations in the United States (US). A comprehensive performance evaluation was carried out with one-hundred stochastically generated extremes for each historically observed extreme rainfall event. The comparisons included: 1-h (15-min); 2-h (30-min); and, 3-h (45-min) peak rainfall intensities for India and (US) stations, respectively; number of first, second, third, and fourth-quartile storms; the dependence of peak rainfall intensity on total depth and duration; and, return levels and return periods of peak discharge when these extremes were applied on a hypothetical urban catchment. Results show that the model efficiently characterizes the time distribution of extremes with: Nash–Sutcliffe-Efficiency > 0.85 for peak rainfall intensity and peak discharge; < 20% error in reproducing different quartile storms; and, < 0.15 error in correlation analysis at all study locations. Hence the model can be used to effectively reproduce the time distribution of extreme rainfall events, thus increasing the confidence of design of urban stormwater management structures.

Funder

Science and Engineering Research Board, Department of Science and Technology, Government of India

USDA National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3