Modeling reference evapotranspiration using machine learning and remote sensing techniques for semi-arid subtropical climate of Indian Punjab

Author:

Duhan Darshana1,Singh Mahesh Chand2ORCID,Singh Dharmendra3,Satpute Sanjay2,Singh Sompal4,Prasad Vishnu5

Affiliation:

1. a Department of Soil and Water Engineering, CCS HAU, Hisar, Haryana 125004, India

2. b Department of Soil and Water Engineering, PAU Ludhiana, Ludhiana, Punjab 141004, India

3. c Haryana Space Applications Centre (HARSAC), Hisar, Haryana 125004, India

4. d Department of Climate Change & Agricultural Meteorology, PAU Ludhiana, Ludhiana, Punjab 141004, India

5. e Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110012, India

Abstract

Abstract A study was carried out to develop and evaluate the performance of different machine learning (ML) models for predicting reference evapotranspiration (ET0). The models included multiple linear regression (MLR), least square-support vector machine (LS-SVM), artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS). The daily meteorological data for 50 years (1970–2019) were used to estimate ET0 using FAO-ET calculator. The FAO-ET calculator was compared with ML models to investigate the best-fit ML model for predicting ET. Thereafter, ET predicted by the best-fit ML model was compared with satellite (Moderate Resolution Imaging Spectroradiometer – MODIS) ET, which was finally mapped to a larger landscape (over entire Punjab and Haryana). Modeling of ET0 was best performed through LS-SVM followed by ANN2, ANN1, ANFIS10, ANFIS2, MLR and ANFIS9 models. Among developed models, coefficient of determination (R2) value varied from 0.800 to 0.998, being highest (0.998) under LS-SVM model. MODIS overestimated ET when compared with LS-SVM having R2 and root mean square error (RMSE) values of 0.73 and 3.95 mm, respectively. After applying the bias correction factor, R2 and RMSE were 0.74 and 1.19 mm, respectively. The ML and satellite-based ET estimation would be useful for timely water budgeting to manage the water scarcity problems from local to regional levels.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3