Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy

Author:

Biondi Daniela1,De Luca Davide Luciano1

Affiliation:

1. Department of Informatics, Modelling, Electronics and System Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

Abstract

Parameter estimation for rainfall-runoff models in ungauged basins is a key aspect for a wide range of applications where streamflow predictions from a hydrological model can be used. The need for more reliable estimation of flow in data scarcity conditions is, in fact, thoroughly related to the necessity of reducing uncertainty associated with parameter estimation. This study extends the application of a Bayesian procedure that, given a generic rainfall-runoff model, allows for the assessment of posterior parameter distribution, using a regional estimate of ‘hydrological signatures’ available in ungauged basins. A set of eight catchments located in southern Italy was analyzed, and regionalized, and the first three L-moments of annual streamflow maxima were considered as signatures. Specifically, the effects of conditioning posterior model parameter distribution under different sets of signatures and the role played by uncertainty in their regional estimates were investigated with specific reference to the application of rainfall-runoff models in design flood estimation. For this purpose, the continuous simulation approach was employed and compared to purely statistical methods. The obtained results confirm the potential of the proposed methodology and that the use of the available regional information enables a reduction of the uncertainty of rainfall-runoff models in applications to ungauged basins.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference29 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3