Exploring Signature‐Based Model Calibration for Streamflow Prediction in Ungauged Basins

Author:

Dal Molin Marco12,Kavetski Dmitri13ORCID,Albert Carlo1ORCID,Fenicia Fabrizio1ORCID

Affiliation:

1. Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

2. Centre of Hydrogeology and Geothermics (CHYN) University of Neuchâtel Neuchâtel Switzerland

3. School of Civil Environmental and Mining Engineering University of Adelaide Adelaide SA Australia

Abstract

AbstractCalibration of precipitation‐streamflow models to streamflow signatures is a promising approach for streamflow prediction in ungauged basins (PUB). The estimation of parameter and prediction uncertainty in this case is not trivial because: (a) calibration takes place in the signature domain, while predictions are required in the time domain, and (b) streamflow signatures are estimated (e.g., from donor catchments) rather than “observed” (computed from observed streamflow in the target catchment), and therefore particularly uncertain. This study investigates model calibration using estimated signatures in an Approximate Bayesian Computation framework. First, we construct a stochastic signature transfer model, based on seasonal flow duration curves. Second, we calibrate a precipitation‐streamflow model to the estimated signatures, accounting for their uncertainty. The proposed method is tested in six catchments of the Thur basin, Switzerland. Three data availability scenarios are considered: (a) concomitant scenario, where signatures are “observed,” (b) non‐concomitant scenario, where signatures are transferred from a different time period, and (c) regionalization scenario, where signatures are transferred from (neighboring) donor catchments. In this study, the switch from observed to regionalized signatures increases predictive streamflow uncertainty by 38% and worsens the (deterministic) fit to observations by 17% (in terms of Nash‐Sutcliffe efficiency). Despite this deterioration, posterior predictive uncertainty remains lower than prior predictive uncertainty generated using uniform priors over representative parameter ranges (“uncalibrated” model), which demonstrates the effectiveness of the proposed signature‐based calibration. More importantly, uncertainty is reliably estimated at the ungauged catchments, which represents a key advance in stochastic streamflow PUB.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3